Structural
Cell biology studies the structural and physiological properties of cells, including their behaviors, interactions, and environment. This is done on both the microscopic and molecular levels, for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology. Anatomy considers the forms of macroscopic structures such as organs and organ systems.
Physiological
Animal anatomical engraving from Handbuch der Anatomie der Tiere für Künstler. Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Physiology studies how for example nervous, immune, endocrine, respiratory, and circulatory systems, function and interact.
Evolutionary
Evolutionary research is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogy, ornithology, or herpetology, but use those organisms as systems to answer general questions about evolution.
Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution,[9] and partly on the developments in areas such as population genetics[10] and evolutionary theory. In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Related fields often considered part of evolutionary biology are phylogenetics, systematics, and taxonomy.
Systematics
Scientific classification in zoology, is a method by which zoologists group and categorize organisms by biological type, such as genus or species. Biological classification is a form of scientific taxonomy. Modern biological classification has its root in the work of Carolus Linnaeus, who grouped species according to shared physical characteristics. These groupings have since been revised to improve consistency with the Darwinian principle of common descent. Molecular phylogenetics, which uses DNA sequences as data, has driven many recent revisions and is likely to continue to do so. Biological classification belongs to the science of zoological systematics.
Many scientists now consider the five-kingdom system outdated. Modern alternative classification systems generally begin with the three-domain system: Archaea (originally Archaebacteria); Bacteria (originally Eubacteria); Eukaryota (including protists, fungi, plants, and animals)[12] These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of the cell exteriors.
Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; Kingdom; Phylum; Class; Order; Family; Genus; Species. The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiens. Homo is the genus, and sapiens the species. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase. Additionally, the entire term may be italicized or underlined.
The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. The classification, taxonomy, and nomenclature of zoological organisms is administered by the International Code of Zoological Nomenclature, and International Code of Nomenclature of Bacteria for animals and bacteria, respectively. The classification of viruses, viroids, prions, and all other sub-viral agents that demonstrate biological characteristics is conducted by the International Code of Virus classification and nomenclature. However, several other viral classification systems do exist.
A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature in these areas, but has yet to be formally adopted.[19] The BioCode draft has received little attention since 1997; its originally planned implementation date of January 1, 2000, has passed unnoticed. However, a 2004 paper concerning the cyanobacteria does advocate a future adoption of a BioCode and interim steps consisting of reducing the differences between the codes.[20] The International Code of Virus Classification and Nomenclature (ICVCN) remains outside the BioCode.
Ethology
Kelp Gull chicks peck at red spot on mother's beak to stimulate regurgitating reflex.
Ethology studies animal behavior (particularly that of social animals such as primates and canids), and is sometimes considered a separate branch of study. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, The Expression of the Emotions in Man and Animals, influenced many ethologists to come.
Biogeography studies the spatial distribution of organisms on the Earth, focusing on topics like plate tectonics, climate change, dispersal and migration, and cladistics.
ไม่มีความคิดเห็น:
แสดงความคิดเห็น